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ABSTRACT: This paper is an expansion of our previous publication about simultaneous multiple network cards optimization 

in a data centre simulation, using genetic algorithm (GA). The generated optimal solutions from our simulations, which 

represent optimal settings for multiple network cards need to be tested in the real hardware environment. Each optimal 

network card setting is meant for different data transmission characteristic. In a real network environment, we streamed every 

optimal network card setting with their respective data transmission and recorded the throughput rate, and then compared it 

against the throughput from the network card's default setting (unoptimized). The comparison results infer that all of our 

optimal network card settings provide higher throughput than the default setting. Furthermore, our optimal settings exhibit 

capability to prevent the CPU from crashing, as a result from being overwhelmed by the stream of packets. This effect comes 

from the optimal settings' ability to minimize kernel interrupt generation, hence the CPU cycles can be preserved. The 

preservation of CPU cycles leads to lower heat generation and lower power consumption, which is economically beneficial for 

the data centre itself. 
Keywords: Network card, active wait, passive wait, watermark mode, optimization, throughput, CPU cycles, genetic algorithm. 

 

1. INTRODUCTION 

Optimization is an important research area, where the 

existing system is adjusted to improve its performance. A 

system typically contains some adjustable combinatorial 

parameters, which when optimized will enhance the system’s 

performance, compared to the default setting. 

In our case, the optimization area is about network card 

optimization, which is a part of network optimization and 

hardware optimization. Our simulations of network card 

optimizations have been conducted and published in our 

previous paper [1]. However, its real environment's 

validations of throughput between the unoptimized and 

optimized network card setting have not been published, thus 

this paper will fulfill that research gap by presenting the 

mentioned comparisons. 

The existing network optimizations that we have reviewed 

are listed in [2] and [3]. Other worth mentioning papers about 

measurement between unoptimized and optimized system are 

for example [4], which compares the applications 

performances between unoptimized and optimized compiler, 

[5] that compares between unoptimized and optimized 

android smartphone on long survey, benchmarking between 

unoptimized object-oriented codes and the optimized ones by 

[6], comparison of performances between unoptimized and 

optimized routing in packet switched networks by [7], 

comparison between unoptimized and optimized video 

codecs' performances by [8], benchmarking between the 

unoptimized and optimized FPGA (Field-Programmable Gate 

Array) embedded processors by [9, 10] that measures the 

performance differences between optimized incidence tree 

parametrized  systems and the unoptimized ones, and other 

works that are too much to mention all in this paper.           

Our research results presentations in this paper are an 

important visualization of the degree of improvements that 

can be achieved by optimizing network card parameters. The 

network card throughput improvements will be seen for 

different transmission sizes with different packet sizes. 

Furthermore, besides increasing throughput, the optimal 

adjustment of network card will also reduce the usage of CPU 

cycles, which in turn will preserve the CPU cycles for other 

processes. This optimization's after-effect relates to [11], 

which argues that optimal CPU usage prevents overheating 

and unexpected shutdown. Moreover, additional benefits 

from CPU cycles preservation include lower heat generation 

and lower power consumption, which subsequently will 

prolong the CPU lifetime. As informed by [12] that the 

reduction of heat will also lower the resistance, which the 

electrons have to pass through to switch states, therefore 

lower heat will improve the CPU longevity. Automatically, 

the longer lifetime of CPU saves the cost of hardware 

replacement or upgrade. The avoidance of hardware 

replacement/upgrade eventually eliminates downtime of the 

data centre, caused by the replacement process. Therefore, 

the customers' satisfaction and profit can be sustained. 

 

2. EXISTING NETWORK CARD 

OPTIMIZATIONS 

This section explains about current network card optimization 

practices that we complement with our own methodology as 

conducted in [1]. 

Network card’s kernel interrupt requests can be optimally 

allocated to a group of processors (CPUs) [13], to prevent 

certain CPU from being overwhelmed by too much interrupt 

requests. In other words, this network card optimization is 

directed to make processors more efficient. He also informs 

about NAPI packet polling within network card to reduce the 

number of interrupt requests, but does not specifically 

mention whether it is polling based on timer or amount of 

packets. However, both timer and amount of collected 

packets based polling optimization are parts of our research 

objectives. 

Authors in [13], further converses about the offload feature 

for transfer of packet handling and checksum calculation task 

from the CPU to the network card. This is another method to 

make CPU more efficient, yet on the other hand it risks the 

performance of the network card. Another offload of CPU 

task to the network card is called TCP segmentation offload, 

which has another intention to improve CPU’s efficiency, 
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while risking the network card in the process. Generic 

segmentation offload feature is also available, which can 

segment transmission from other than TCP protocol 

(generic). The next network card setting informed by [13] to 

reduce CPU load is called Large Receive Offload, where the 

network card will combine several Ethernet frames into one 

receive to save CPU cycle, but on the other hand it gives 

additional task to the network card. 

Moreover, [13] also describes special featuresthe  in Intel 

Dual Core and Intel Xeon Quad Core processor that can 

move network data more efficiently. However, other types of 

processor may not have this feature. 

In conclusion, most of network card adjustments discussed by 

[13] are meant to preserve the CPU cycles for computation 

purposes instead of networking processes. The optimization 

inside the network card itself is seen as a research gap that we 

are about to fill up in this paper. 

Distributing interrupt requests of multiple network adapters 

to different CPU cores is informed by [14]. This is again an 

act to preserve CPU cycles. A distinct feature of Mellanox 

network card as described by [14] is a low latency request to 

lower the power consumption. 

The next method to preserve CPU cycles informed by [14] is 

the interrupt moderation tuning. However, there is no specific 

accurate guideline as it is based on loose estimation about 

transmission and receive rate, it is also without taking into 

account the certain transmission size and particular desired 

minimum throughput when receiving the transmission. 

A risky method to allocate CPU to handling specific protocol 

process above the interrupt handler is Receive Packet 

Steering (RPS) ([14]). The risk involves its necessity to 

recompile the kernel, which may harm the system to not 

recognize the hardware at all. 

Network card’s timer based polling is also described by [14]. 

However, it does not explain about optimizing it to achieve 

specific throughput on receiving transmission and/or the 

minimization of interrupt generation based on specific 

transmission size. This optimization gap is complemented by 

this paper as it is one of our actual research objectives. 

A case study reported by [15] discusses about improving 

FedEx data centre by upgrading their network cards to 10Gb 

Ethernet and their existing network cables to Direct Attach 

Twinax cabling, which only had 7 meters of length. This 

way, however, required the conversion of existing multiple 

physical links into virtual links using VLAN trunking. 

Furthermore, it did not instantly improve the network receive 

throughput to 10Gbps, instead the initial recorded throughput 

was only around 1/20 of the maximum 10Gbps. Another 

factor that affected the throughput was the choice of file 

transfer protocol, where the ones without cryptography 

improved throughput significantly. While in virtualized 

environment, the usage of multiple virtual machine (VM) 

instances gave higher throughput than the single one. All 

around, maximizing 10Gb network card needs some tool 

capability tests, system (BIOS) adjustment, VM 

configuration, and hardware configuration that often involves 

vendor consultation. Hence, hardware upgrade seems to 

trigger long installation and deployment time. 

Modification of Intel network card kernel driver to moderate 

interrupt, according to packet rate instead of byte rate was 

done by [16]. Their algorithm was proven to be better than 

the Intel’s default, however, it does not consider the 

embedded network card speed and the transmission size. 

Additionally, their algorithm does not consider throughput 

maximization, instead it focuses on interrupt and latency 

minimization. Furthermore, the implementation requires 

kernel change, and it is not widely deployed to all types of 

network card.  Similar work is also accomplished by [17] 

using different algorithms. 

Another interrupt moderation work is proposed by [18] who 

estimate the combination of interrupt and timer based polling. 

It is based on the principles that kernel interrupt is generated 

when a packet comes, while poll instruction is always 

executed even if there is no packet received. Thus, polling is 

wasting CPU cycles when there is no packet received. On the 

other hand, interrupt will excessively consume CPU cycles 

when there is acontinuous big transmission. This mixed 

approach brings side effect, where the continuous 

enablement/disablement of interrupt everytime polling is 

activated causes added CPU cycles. Such effect is discussed 

in [19] and [20]. The loose estimation of packet rate makes 

the interrupt-polling combination even more challenging, 

because there is no specification of transmission size. 

Furthermore, this method has afeasibility challenge to be 

implemented since it requires modification of network card 

driver. Additionally, another polling feature that uses 

watermark value was also not taken into their optimization 

case. 

A similar method to [18] is [21], where they also combine 

interrupt and timer based polling that requires kernel recode, 

based on the loose estimated incoming packet rate. The 

objective of their optimization moderation is towards the 

minimization of the number of interrupts. It is emphasized by 

[21] that interrupt is expensively generated by high hardware 

and software events, which involve multiple processes as 

explained by [22]. Subsequently, they also argue that timer 

based polling is more appropriate for big data transmission. 

The next work of combining interrupt and timer based polling 

was conducted by [23], who modified Linux kernel version 

2.6.15 to preserve CPU cycle. Its optimization is based on 

packet rate estimation similar to the previously mentioned 

works. Therefore, it contains similar limitations, such as there 

is no accurate segmentation of transmission size, it is limited 

to acertain kernel version of specific network card, there is no 

specific range of values of the network card interrupt 

handling, and it does not include polling based on amount of 

packets captured. 

The previously mentioned network card optimization works 

basically treat all packet transmissions by prediction, which 

adds extra computation cost and makes it more challenging to 

achieve the proper network card configuration. In our work, 

we specifically detail the transmission size as the 

optimization factor to make the network card configuration 

more accurate. The certain transmission size settings are to 

prioritize the important transmissions that flow inside a data 

centre.  Added to it is the polling based on amount of packets 

received (watermark value), which makes our network card 

optimization contain more solution possibilities along with 

the inclusion of specified network card speed. Our method 

also does not require kernel coding, hence it is seen as a safer 
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and faster optimization way. The exclusion of kernel 

recoding also makes our  network card optimization method 

compatible with multiple operating systems. Another extra 

feature by our method is the inclusion of both throughput 

maximization and kernel interrupt minimization [24], as our 

objectives. Finally, our method includes simultaneous 

multiple network cards optimization, because in real life, data 

centre contains multiple network devices with each consisting 

of multiple network cards. This is doable because of our 

adjustable simulation model [1]. 

 

3. PROPOSED RESEARCH 

The network card parameters optimization that we have 

conducted  revolve around 3 parameters, which are active 

wait mode, passive wait mode, and watermark mode. Active 

wait mode is when the network card generates kernel 

interrupt to process packets everytime a packet comes. 

Passive wait is a mode that uses timer based polling, before 

kernel interrupt is generated to indicate packets processing. 

Next, watermark mode is a polling based on amount of 

received packets (in Byte), before kernel interrupt is activated 

to process the received packets. The optimal choice of either 

one of these network card modes for a specific transmission, 

will increase the throughput and preserve the CPU cycles. 

More details about these network card modes can be read in 

our previous paper [1].  

The simultaneous multiple network card optimizations reflect 

a data centre, with each network card handles different 

transmission characteristics. There are 47 different 

transmissions in total. After the genetic algorithm (GA) based 

optimizations were completed [1], the optimal network card 

solutions for all transmissions were tested in real physical 

network environment against each network card's default 

setting (unoptimized), to see if the optimal settings provided 

better throughputs than the default setting. 

 

4. EXPERIMENTAL DETAILS   

The data transmissions were generated using Linux based 

hping3 [25] software, while the network card modules were 

using PF_RING version 5.4.6 [26], which provided all the 

previously mentioned 3 network card modes. All the network 

card optimal settings' throughputs were compared with the 

ones from PF_RING's default setting. The throughput is 

calculated by dividing the amount of total packets (Bytes) 

acknowledged to hping3, over the duration (seconds) for 

hping3 to finish sending data transmission to the PF_RING 

network card module. The unit of throughput will be 

converted from Bytes/seconds to Megabit/seconds or Mbps. 

There are 47 total transmissions, which will be handled by 47 

different optimal network card settings. These compiled 

comparisons against the default PF_RING setting are 

presented in the next section. Additionally, the respective 

complete list of optimal network card setting for every 

transmission can be read in our previous publication [24]. 

 

5. RESULTS AND DISCUSSION 

From Figure 1 and Table 1 above, it is inferred that all the 

optimized versions of network cards always generate higher 

throughputs than the default setting (unoptimized), with the 

average throughput improvement of 4.6%. There is a notable 

case for Node 3, where the default setting caused the machine 

to crash as a result of its inability to handle the stream of 

packets transmission. 

 
Fig (1) Throughput Comparisons between Unoptimized and 

Optimized Network Cards 

 

Table (1) The Throughputs of Unoptimized and Optimized 

Network Cards 

Node 

ID 

Transmission 

Size (GB) 

Packet 

Size 

(Byte) 

Default 

Setting 

Throughput 

(Mbps) 

Optimal 

Setting 

Throughput 

(Mbps) 

Improveme

nt Rate (%) 

1 7.5 1400 4.583 4.584 0.02 

2 6.9 536 15.40 15.45 0.32 

3 9.9 576 15.86 31.39 97.92 

4 21 1500 43.43 43.48 0.12 

5 86 1400 40.27 40.44 0.42 

6 19 1480 42.59 43.61 2.39 

7 33 1460 30.58 43.76 43.10 

8 61 1600 45.85 47.03 2.57 

9 61 1440 39.37 42.74 8.56 

10 14 1500 42.84 43.22 0.89 

11 62 220 6.09 6.28 3.12 

12 80 1400 39.31 40.97 4.22 

13 61 280 8.02 8.28 3.24 

14 62 1400 40.50 40.51 0.02 

15 26 1400 40.41 40.59 0.45 

16 21 1400 40.10 40.90 2 

17 65 1400 40.60 40.90 0.74 

18 16 1400 40.80 41.14 0.83 

19 19 1400 41.04 41.27 0.56 

20 7.9 1500 43.12 43.18 0.14 

21 18 1400 40.10 41.15 2.62 

22 21 340 9.69 9.72 0.31 

23 7.4 400 11.40 11.61 1.84 

24 17 1400 41.36 41.66 0.73 

25 400 1400 40.44 41.04 1.48 

26 368.64 1500 41.85 43.59 4.16 
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27 1 68 1.946 1.951 0.26 

28 2 128 3.65 3.74 2.47 

29 3 200 5.67 5.69 0.35 

30 4 440 12.81 13 1.48 

31 5 480 13.77 14.07 2.18 

32 6 600 17.53 17.56 0.17 

33 7 628 18.05 18.29 1.33 

34 9 680 19.77 19.88 0.56 

35 1.5 740 21.40 21.53 0.61 

36 2.5 780 22.71 22.73 0.1 

37 3.5 840 23.94 25.30 5.68 

38 4.5 880 24.87 24.96 0.36 

39 5.5 940 27.29 27.30 0.04 

40 6.5 980 28.12 28.80 2.42 

41 7.6 1040 30.27 30.39 0.40 

42 9.5 1080 30.21 31.82 5.33 

43 10 1140 33.08 33.13 0.15 

44 10.5 1180 34.14 34.64 1.46 

45 11 1240 34.74 36.83 6.02 

46 11.5 1280 37.03 37.12 0.24 

47 12 1340 37.13 37.50 1 

The crash was a consequence of the CPU could not keep up 

generating and reacting to kernel interrupts as the stream of 

packets came. Subsequently, the crash resulted in 

approximately half of total packets lost. On the other hand, 

the optimized version managed to receive the transmission 

without crashing. It shows the high importance of kernel 

interrupts minimization to reduce CPU workload. This kernel 

interrupts minimization was achieved along with the 

maximization of throughput by the optimized network card. 

The values of the optimal network card settings for each 

transmission above can be seen in our previous paper [24]. 

The importance of kernel interrupt minimization is further 

affirmed by [22], which describes that kernel interrupt 

generation is actually an expensive process, because it 

requires a series of hardware and software events.   

Special for the cases, where the optimal network card setting 

is active wait, instead of using the native active wait mode 

inside the PF_RING module in our real network 

transmissions, we implemented passive wait with 10ms, 

because in our mathematical model for active wait, 10ms of 

poll duration is chosen to represent the work of active wait 

[27].  

Further, in general, regardless of transmission level, either 

small transmissions (less than 20GB), medium transmissions 

(between 20GB and 100GB inclusive), or big transmissions 

(above 100GB), the optimized versions of network cards 

consistently generate higher throughputs and lower CPU 

cycle consumption. It infers that our methodology to optimize 

network cards is applicable to various transmission levels. 

 

 

6. CONCLUSION 

In conclusion, optimization of network card setting increases 

throughput rate, and most importantly reduces CPU cycles 

utilization, thus protecting the CPU from being exhausted, 

over-heating, and crashing. Well maintained CPU will finally 

last longer, which brings economy value to the data centre. 

Finally, this conclusion proves that our methodology to 

optimize multiple network cards simultaneously, through 

simulation as published in [1], is workable and successful in 

real hardware environment. Added to the fact that our 

average simulation time between 2-3 hours, our methodology 

is considered to be practical as well. 

 

7. ACKNOWLEDGEMENT 

The authors are grateful for the support of the Ministry of 

Higher Education (MoHE), Malaysia (Grant No: 0153AB-

K47) and Universiti Teknologi PETRONAS High 

Performance Cloud Computing Centre (HPC
3
) for 

accommodating and funding this research.  

 

8. REFERENCES 

[1] Nurika, O., Hassan, M. F., Zakaria, N., Jung, L. T., 

"Genetic Algorithm Optimized Network in Cloud Data 

Centre" Advance Science Letters Journal, 22(10): 2705-

2709 (2015). 

[2] Nurika, O., Hassan, M. F., Zakaria, N., Jung, L. T., 

"Review of Cloud Network Optimization Practices" 

Science International, Lahore, 26(5): 1801-1805 (2014). 

[3] Nurika, O., Hassan, M. F., Zakaria, N., Jung, L. T., 

"Workability Review of Genetic Algorithm Approach in 

Networks" Proc. 2014 International Conference on 

Computer and Information Sciences (ICCOINS2014), 1-

6 (2014).  

[4] Scott, K., "On Proebsting's Law" Technical Report, 

University of Virginia, (2001). 

[5] Sarraf, S., Brooks, J., Cole, J., Wang, X., "What Is The 

Impact of Smartphone Optimization on Long Surveys?" 

2015 American Association for Public Opinion 

Research, (2015). 

[6] Holzle, U., Agesen, O., "Dynamic vs. Static Optimization 

Techniques for Object-Oriented Languages" Journal 

Theory and Practice of Object Systems, 1(3): 167-188 

(1995). 

[7] Menth, M., Martin, R., Hartmann, M., Sporlein, U., 

"Efficiency of Routing and Resilience Mechanisms in 

Packet-Switched Networks" European Transactions on 

Telecommunications, volume 21, 2(2) (2009).     

[8] Fritts, J. E., Steiling, F. W., Tucek, J. A., Wolf, W., 

"MediaBench II Video: Expediting the next generation 

of video systems research" Microprocessors and 

Microsystems, 33(4): 301-318 (2009).  

[9] Fletcher, B. H., "FPGA Embedded Processors: 

Revealing True System Performance" Embedded 

Systems Conference San Francisco 2005, (2005). 

[10] Sitharam, M., Peters, J., Zhou, Y., "Optimized 

parametrization of systems of incidences between rigid 

bodies" Journal of Symbolic Computation, 45(4): 481-

498 (2010). 

[11] Bai, Y. W., Cheng, C. H., "Dynamic Adjustment of 

CPU Clock Speed to Prevent Notebook Overheating 



Special Issue 

Sci.Int.(Lahore),29(1),87-91, 2016  ISSN 1013-5316;CODEN: SINTE 8 91 

January-Frbruary 

and Shutdown by AC Adapter," The 1st IEEE Global 

Conference on Consumer Electronics 2012, (2012). 

[12] Best, B. N. B., "The Effect of Heat on Processors: A 

Challenge to Computer Usage in Northern Nigeria 

Rural Colleges" Journal of Global Research in 

Computer Sciences, (2015). 

[13] Leitao, B. H., "Tuning 10Gb network cards on Linux," 

Proceedings of the 2009 Linux Symposium, (2009). 

[14] Technologies, M., "Performance Tuning Guidelines for 

Mellanox Network Adapters (Revision 1.17 ed.)," 

http://www.mellanox.com/related-

docs/prod_software/Performance_Tuning_Guide_for_

Mellanox_Network_Adapters.pdf, (2016). 

[15] Greer, C., Bob, A., Sammeta, S., "Maximizing File 

Transfer Performance Using 10Gb Ethernet and 

Virtualization," 

http://www.intel.com/content/dam/support/us/en/docum

ents/network/sb/fedexcasestudyfinal.pdf, (2010). 

[16] Emmerich, P., Raumer, D., Beifu, A., Erlacher, L., 

Wohlfart, F., et al., "Optimizing latency and CPU load 

in packet processing systems," Proceedings of the 

International Symposium on Performance Evaluation of 

Computer and Telecommunication Systems, Chicago, 

Illinois, (2015). 

[17] Chang, X., Muppala, J. K., Zou, P., Li, X., "A Robust 

Device Hybrid Scheme to Improve System Performance 

in Gigabit Ethernet Networks," 32nd IEEE Conference 

on Local Computer Networks (LCN 2007), pp. 444-454, 

(2007). 

[18] Maquelin, O., Gao, G. R., Hum, H. H., Theobald, K. B., 

Tian, X.-M., "Polling watchdog: Combining polling and 

interrupts for efficient message handling," ACM 

SIGARCH Computer Architecture News, pp. 179-188, 

(1996). 

[19] Spertus, E., Dally, W. J., "Evaluating the locality 

benefits of active messages," ACM SIGPLAN Notices, 

pp. 189-198, (1995). 

[20] Spertus, E., Goldstein, S. C., Schauser, K. E., Von 

Eicken, T., Culler, D. E., Dally, W. J., "Evaluation of 

mechanisms for fine-grained parallel programs in the J-

machine and the CM-5," ACM SIGARCH Computer 

Architecture News, pp. 302-313, (1993). 

[21] Dovrolis, C., Thayer, B., Ramanathan, P., "HIP: hybrid 

interrupt-polling for the network interface," ACM 

SIGOPS Operating Systems Review, 35, pp. 50-60, 

(2001). 

[22] Vahalia, U., "Unix Internals: The New Frontiers" 

Dorling Kindersley Pvt. Limited, (2008). 

[23] Salah, K., Qahtan, A., "Implementation and 

experimental performance evaluation of a hybrid 

interrupt-handling scheme," Computer 

Communications, 32, pp. 179-188, (2009). 

[24] Nurika, O., Hassan, M. F., Zakaria, N., "A Study of 

Relations between Optimal Network Card Mode and 

Data Transmission Size" Journal of Informatics and 

Mathematical Sciences, (2016), In Press. 

[25] hping3, http://www.hping.org/hping3.html.  

[26] NTOP PF_RING, http://www.ntop.org/products/packet-

capture/pf_ring/. 

[27] Nurika, O., Hassan, M. F., Zakaria, N., Jung, L. T., 

"Mathematical Models for Network Card Simulation 

and Their Empirical Validations" Proc. 2015 

International Symposium on Mathematical Sciences & 

Computing Research (iSMSC2015), 66-71 (2015). 

 

 
                                                           
 

 


