
Special Issue

Sci.Int.(Lahore),29(1),87-91, 2016 ISSN 1013-5316;CODEN: SINTE 8 87

January-Frbruary

REAL THROUGHPUT MEASUREMENTS COMPARISON BETWEEN
UNOPTIMIZED AND OPTIMIZED NETWORK CARDS

 Okta Nurika
1,

, Mohd Fadzil Hassan
1,

, Nordin Zakaria
1,*

1Department of Computer & Information Sciences, Universiti Teknologi PETRONAS, 32610 Perak, Malaysia
For correspondence; E-mail: okta.rider@gmail.com

ABSTRACT: This paper is an expansion of our previous publication about simultaneous multiple network cards optimization

in a data centre simulation, using genetic algorithm (GA). The generated optimal solutions from our simulations, which

represent optimal settings for multiple network cards need to be tested in the real hardware environment. Each optimal

network card setting is meant for different data transmission characteristic. In a real network environment, we streamed every

optimal network card setting with their respective data transmission and recorded the throughput rate, and then compared it

against the throughput from the network card's default setting (unoptimized). The comparison results infer that all of our

optimal network card settings provide higher throughput than the default setting. Furthermore, our optimal settings exhibit

capability to prevent the CPU from crashing, as a result from being overwhelmed by the stream of packets. This effect comes

from the optimal settings' ability to minimize kernel interrupt generation, hence the CPU cycles can be preserved. The

preservation of CPU cycles leads to lower heat generation and lower power consumption, which is economically beneficial for

the data centre itself.
Keywords: Network card, active wait, passive wait, watermark mode, optimization, throughput, CPU cycles, genetic algorithm.

1. INTRODUCTION

Optimization is an important research area, where the

existing system is adjusted to improve its performance. A

system typically contains some adjustable combinatorial

parameters, which when optimized will enhance the system’s

performance, compared to the default setting.

In our case, the optimization area is about network card

optimization, which is a part of network optimization and

hardware optimization. Our simulations of network card

optimizations have been conducted and published in our

previous paper [1]. However, its real environment's

validations of throughput between the unoptimized and

optimized network card setting have not been published, thus

this paper will fulfill that research gap by presenting the

mentioned comparisons.

The existing network optimizations that we have reviewed

are listed in [2] and [3]. Other worth mentioning papers about

measurement between unoptimized and optimized system are

for example [4], which compares the applications

performances between unoptimized and optimized compiler,

[5] that compares between unoptimized and optimized

android smartphone on long survey, benchmarking between

unoptimized object-oriented codes and the optimized ones by

[6], comparison of performances between unoptimized and

optimized routing in packet switched networks by [7],

comparison between unoptimized and optimized video

codecs' performances by [8], benchmarking between the

unoptimized and optimized FPGA (Field-Programmable Gate

Array) embedded processors by [9, 10] that measures the

performance differences between optimized incidence tree

parametrized systems and the unoptimized ones, and other

works that are too much to mention all in this paper.

Our research results presentations in this paper are an

important visualization of the degree of improvements that

can be achieved by optimizing network card parameters. The

network card throughput improvements will be seen for

different transmission sizes with different packet sizes.

Furthermore, besides increasing throughput, the optimal

adjustment of network card will also reduce the usage of CPU

cycles, which in turn will preserve the CPU cycles for other

processes. This optimization's after-effect relates to [11],

which argues that optimal CPU usage prevents overheating

and unexpected shutdown. Moreover, additional benefits

from CPU cycles preservation include lower heat generation

and lower power consumption, which subsequently will

prolong the CPU lifetime. As informed by [12] that the

reduction of heat will also lower the resistance, which the

electrons have to pass through to switch states, therefore

lower heat will improve the CPU longevity. Automatically,

the longer lifetime of CPU saves the cost of hardware

replacement or upgrade. The avoidance of hardware

replacement/upgrade eventually eliminates downtime of the

data centre, caused by the replacement process. Therefore,

the customers' satisfaction and profit can be sustained.

2. EXISTING NETWORK CARD

OPTIMIZATIONS

This section explains about current network card optimization

practices that we complement with our own methodology as

conducted in [1].

Network card’s kernel interrupt requests can be optimally

allocated to a group of processors (CPUs) [13], to prevent

certain CPU from being overwhelmed by too much interrupt

requests. In other words, this network card optimization is

directed to make processors more efficient. He also informs

about NAPI packet polling within network card to reduce the

number of interrupt requests, but does not specifically

mention whether it is polling based on timer or amount of

packets. However, both timer and amount of collected

packets based polling optimization are parts of our research

objectives.

Authors in [13], further converses about the offload feature

for transfer of packet handling and checksum calculation task

from the CPU to the network card. This is another method to

make CPU more efficient, yet on the other hand it risks the

performance of the network card. Another offload of CPU

task to the network card is called TCP segmentation offload,

which has another intention to improve CPU’s efficiency,

88 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(1),87-91,2016

January-Frbruary

while risking the network card in the process. Generic

segmentation offload feature is also available, which can

segment transmission from other than TCP protocol

(generic). The next network card setting informed by [13] to

reduce CPU load is called Large Receive Offload, where the

network card will combine several Ethernet frames into one

receive to save CPU cycle, but on the other hand it gives

additional task to the network card.

Moreover, [13] also describes special featuresthe in Intel

Dual Core and Intel Xeon Quad Core processor that can

move network data more efficiently. However, other types of

processor may not have this feature.

In conclusion, most of network card adjustments discussed by

[13] are meant to preserve the CPU cycles for computation

purposes instead of networking processes. The optimization

inside the network card itself is seen as a research gap that we

are about to fill up in this paper.

Distributing interrupt requests of multiple network adapters

to different CPU cores is informed by [14]. This is again an

act to preserve CPU cycles. A distinct feature of Mellanox

network card as described by [14] is a low latency request to

lower the power consumption.

The next method to preserve CPU cycles informed by [14] is

the interrupt moderation tuning. However, there is no specific

accurate guideline as it is based on loose estimation about

transmission and receive rate, it is also without taking into

account the certain transmission size and particular desired

minimum throughput when receiving the transmission.

A risky method to allocate CPU to handling specific protocol

process above the interrupt handler is Receive Packet

Steering (RPS) ([14]). The risk involves its necessity to

recompile the kernel, which may harm the system to not

recognize the hardware at all.

Network card’s timer based polling is also described by [14].

However, it does not explain about optimizing it to achieve

specific throughput on receiving transmission and/or the

minimization of interrupt generation based on specific

transmission size. This optimization gap is complemented by

this paper as it is one of our actual research objectives.

A case study reported by [15] discusses about improving

FedEx data centre by upgrading their network cards to 10Gb

Ethernet and their existing network cables to Direct Attach

Twinax cabling, which only had 7 meters of length. This

way, however, required the conversion of existing multiple

physical links into virtual links using VLAN trunking.

Furthermore, it did not instantly improve the network receive

throughput to 10Gbps, instead the initial recorded throughput

was only around 1/20 of the maximum 10Gbps. Another

factor that affected the throughput was the choice of file

transfer protocol, where the ones without cryptography

improved throughput significantly. While in virtualized

environment, the usage of multiple virtual machine (VM)

instances gave higher throughput than the single one. All

around, maximizing 10Gb network card needs some tool

capability tests, system (BIOS) adjustment, VM

configuration, and hardware configuration that often involves

vendor consultation. Hence, hardware upgrade seems to

trigger long installation and deployment time.

Modification of Intel network card kernel driver to moderate

interrupt, according to packet rate instead of byte rate was

done by [16]. Their algorithm was proven to be better than

the Intel’s default, however, it does not consider the

embedded network card speed and the transmission size.

Additionally, their algorithm does not consider throughput

maximization, instead it focuses on interrupt and latency

minimization. Furthermore, the implementation requires

kernel change, and it is not widely deployed to all types of

network card. Similar work is also accomplished by [17]

using different algorithms.

Another interrupt moderation work is proposed by [18] who

estimate the combination of interrupt and timer based polling.

It is based on the principles that kernel interrupt is generated

when a packet comes, while poll instruction is always

executed even if there is no packet received. Thus, polling is

wasting CPU cycles when there is no packet received. On the

other hand, interrupt will excessively consume CPU cycles

when there is acontinuous big transmission. This mixed

approach brings side effect, where the continuous

enablement/disablement of interrupt everytime polling is

activated causes added CPU cycles. Such effect is discussed

in [19] and [20]. The loose estimation of packet rate makes

the interrupt-polling combination even more challenging,

because there is no specification of transmission size.

Furthermore, this method has afeasibility challenge to be

implemented since it requires modification of network card

driver. Additionally, another polling feature that uses

watermark value was also not taken into their optimization

case.

A similar method to [18] is [21], where they also combine

interrupt and timer based polling that requires kernel recode,

based on the loose estimated incoming packet rate. The

objective of their optimization moderation is towards the

minimization of the number of interrupts. It is emphasized by

[21] that interrupt is expensively generated by high hardware

and software events, which involve multiple processes as

explained by [22]. Subsequently, they also argue that timer

based polling is more appropriate for big data transmission.

The next work of combining interrupt and timer based polling

was conducted by [23], who modified Linux kernel version

2.6.15 to preserve CPU cycle. Its optimization is based on

packet rate estimation similar to the previously mentioned

works. Therefore, it contains similar limitations, such as there

is no accurate segmentation of transmission size, it is limited

to acertain kernel version of specific network card, there is no

specific range of values of the network card interrupt

handling, and it does not include polling based on amount of

packets captured.

The previously mentioned network card optimization works

basically treat all packet transmissions by prediction, which

adds extra computation cost and makes it more challenging to

achieve the proper network card configuration. In our work,

we specifically detail the transmission size as the

optimization factor to make the network card configuration

more accurate. The certain transmission size settings are to

prioritize the important transmissions that flow inside a data

centre. Added to it is the polling based on amount of packets

received (watermark value), which makes our network card

optimization contain more solution possibilities along with

the inclusion of specified network card speed. Our method

also does not require kernel coding, hence it is seen as a safer

Special Issue

Sci.Int.(Lahore),29(1),87-91, 2016 ISSN 1013-5316;CODEN: SINTE 8 89

January-Frbruary

and faster optimization way. The exclusion of kernel

recoding also makes our network card optimization method

compatible with multiple operating systems. Another extra

feature by our method is the inclusion of both throughput

maximization and kernel interrupt minimization [24], as our

objectives. Finally, our method includes simultaneous

multiple network cards optimization, because in real life, data

centre contains multiple network devices with each consisting

of multiple network cards. This is doable because of our

adjustable simulation model [1].

3. PROPOSED RESEARCH

The network card parameters optimization that we have

conducted revolve around 3 parameters, which are active

wait mode, passive wait mode, and watermark mode. Active

wait mode is when the network card generates kernel

interrupt to process packets everytime a packet comes.

Passive wait is a mode that uses timer based polling, before

kernel interrupt is generated to indicate packets processing.

Next, watermark mode is a polling based on amount of

received packets (in Byte), before kernel interrupt is activated

to process the received packets. The optimal choice of either

one of these network card modes for a specific transmission,

will increase the throughput and preserve the CPU cycles.

More details about these network card modes can be read in

our previous paper [1].

The simultaneous multiple network card optimizations reflect

a data centre, with each network card handles different

transmission characteristics. There are 47 different

transmissions in total. After the genetic algorithm (GA) based

optimizations were completed [1], the optimal network card

solutions for all transmissions were tested in real physical

network environment against each network card's default

setting (unoptimized), to see if the optimal settings provided

better throughputs than the default setting.

4. EXPERIMENTAL DETAILS

The data transmissions were generated using Linux based

hping3 [25] software, while the network card modules were

using PF_RING version 5.4.6 [26], which provided all the

previously mentioned 3 network card modes. All the network

card optimal settings' throughputs were compared with the

ones from PF_RING's default setting. The throughput is

calculated by dividing the amount of total packets (Bytes)

acknowledged to hping3, over the duration (seconds) for

hping3 to finish sending data transmission to the PF_RING

network card module. The unit of throughput will be

converted from Bytes/seconds to Megabit/seconds or Mbps.

There are 47 total transmissions, which will be handled by 47

different optimal network card settings. These compiled

comparisons against the default PF_RING setting are

presented in the next section. Additionally, the respective

complete list of optimal network card setting for every

transmission can be read in our previous publication [24].

5. RESULTS AND DISCUSSION

From Figure 1 and Table 1 above, it is inferred that all the

optimized versions of network cards always generate higher

throughputs than the default setting (unoptimized), with the

average throughput improvement of 4.6%. There is a notable

case for Node 3, where the default setting caused the machine

to crash as a result of its inability to handle the stream of

packets transmission.

Fig (1) Throughput Comparisons between Unoptimized and

Optimized Network Cards

Table (1) The Throughputs of Unoptimized and Optimized

Network Cards

Node

ID

Transmission

Size (GB)

Packet

Size

(Byte)

Default

Setting

Throughput

(Mbps)

Optimal

Setting

Throughput

(Mbps)

Improveme

nt Rate (%)

1 7.5 1400 4.583 4.584 0.02

2 6.9 536 15.40 15.45 0.32

3 9.9 576 15.86 31.39 97.92

4 21 1500 43.43 43.48 0.12

5 86 1400 40.27 40.44 0.42

6 19 1480 42.59 43.61 2.39

7 33 1460 30.58 43.76 43.10

8 61 1600 45.85 47.03 2.57

9 61 1440 39.37 42.74 8.56

10 14 1500 42.84 43.22 0.89

11 62 220 6.09 6.28 3.12

12 80 1400 39.31 40.97 4.22

13 61 280 8.02 8.28 3.24

14 62 1400 40.50 40.51 0.02

15 26 1400 40.41 40.59 0.45

16 21 1400 40.10 40.90 2

17 65 1400 40.60 40.90 0.74

18 16 1400 40.80 41.14 0.83

19 19 1400 41.04 41.27 0.56

20 7.9 1500 43.12 43.18 0.14

21 18 1400 40.10 41.15 2.62

22 21 340 9.69 9.72 0.31

23 7.4 400 11.40 11.61 1.84

24 17 1400 41.36 41.66 0.73

25 400 1400 40.44 41.04 1.48

26 368.64 1500 41.85 43.59 4.16

90 ISSN 1013-5316;CODEN: SINTE 8 Sci.Int.(Lahore),29(1),87-91,2016

January-Frbruary

27 1 68 1.946 1.951 0.26

28 2 128 3.65 3.74 2.47

29 3 200 5.67 5.69 0.35

30 4 440 12.81 13 1.48

31 5 480 13.77 14.07 2.18

32 6 600 17.53 17.56 0.17

33 7 628 18.05 18.29 1.33

34 9 680 19.77 19.88 0.56

35 1.5 740 21.40 21.53 0.61

36 2.5 780 22.71 22.73 0.1

37 3.5 840 23.94 25.30 5.68

38 4.5 880 24.87 24.96 0.36

39 5.5 940 27.29 27.30 0.04

40 6.5 980 28.12 28.80 2.42

41 7.6 1040 30.27 30.39 0.40

42 9.5 1080 30.21 31.82 5.33

43 10 1140 33.08 33.13 0.15

44 10.5 1180 34.14 34.64 1.46

45 11 1240 34.74 36.83 6.02

46 11.5 1280 37.03 37.12 0.24

47 12 1340 37.13 37.50 1

The crash was a consequence of the CPU could not keep up

generating and reacting to kernel interrupts as the stream of

packets came. Subsequently, the crash resulted in

approximately half of total packets lost. On the other hand,

the optimized version managed to receive the transmission

without crashing. It shows the high importance of kernel

interrupts minimization to reduce CPU workload. This kernel

interrupts minimization was achieved along with the

maximization of throughput by the optimized network card.

The values of the optimal network card settings for each

transmission above can be seen in our previous paper [24].

The importance of kernel interrupt minimization is further

affirmed by [22], which describes that kernel interrupt

generation is actually an expensive process, because it

requires a series of hardware and software events.

Special for the cases, where the optimal network card setting

is active wait, instead of using the native active wait mode

inside the PF_RING module in our real network

transmissions, we implemented passive wait with 10ms,

because in our mathematical model for active wait, 10ms of

poll duration is chosen to represent the work of active wait

[27].

Further, in general, regardless of transmission level, either

small transmissions (less than 20GB), medium transmissions

(between 20GB and 100GB inclusive), or big transmissions

(above 100GB), the optimized versions of network cards

consistently generate higher throughputs and lower CPU

cycle consumption. It infers that our methodology to optimize

network cards is applicable to various transmission levels.

6. CONCLUSION

In conclusion, optimization of network card setting increases

throughput rate, and most importantly reduces CPU cycles

utilization, thus protecting the CPU from being exhausted,

over-heating, and crashing. Well maintained CPU will finally

last longer, which brings economy value to the data centre.

Finally, this conclusion proves that our methodology to

optimize multiple network cards simultaneously, through

simulation as published in [1], is workable and successful in

real hardware environment. Added to the fact that our

average simulation time between 2-3 hours, our methodology

is considered to be practical as well.

7. ACKNOWLEDGEMENT

The authors are grateful for the support of the Ministry of

Higher Education (MoHE), Malaysia (Grant No: 0153AB-

K47) and Universiti Teknologi PETRONAS High

Performance Cloud Computing Centre (HPC
3
) for

accommodating and funding this research.

8. REFERENCES

[1] Nurika, O., Hassan, M. F., Zakaria, N., Jung, L. T.,

"Genetic Algorithm Optimized Network in Cloud Data

Centre" Advance Science Letters Journal, 22(10): 2705-

2709 (2015).

[2] Nurika, O., Hassan, M. F., Zakaria, N., Jung, L. T.,

"Review of Cloud Network Optimization Practices"

Science International, Lahore, 26(5): 1801-1805 (2014).

[3] Nurika, O., Hassan, M. F., Zakaria, N., Jung, L. T.,

"Workability Review of Genetic Algorithm Approach in

Networks" Proc. 2014 International Conference on

Computer and Information Sciences (ICCOINS2014), 1-

6 (2014).

[4] Scott, K., "On Proebsting's Law" Technical Report,

University of Virginia, (2001).

[5] Sarraf, S., Brooks, J., Cole, J., Wang, X., "What Is The

Impact of Smartphone Optimization on Long Surveys?"

2015 American Association for Public Opinion

Research, (2015).

[6] Holzle, U., Agesen, O., "Dynamic vs. Static Optimization

Techniques for Object-Oriented Languages" Journal

Theory and Practice of Object Systems, 1(3): 167-188

(1995).

[7] Menth, M., Martin, R., Hartmann, M., Sporlein, U.,

"Efficiency of Routing and Resilience Mechanisms in

Packet-Switched Networks" European Transactions on

Telecommunications, volume 21, 2(2) (2009).

[8] Fritts, J. E., Steiling, F. W., Tucek, J. A., Wolf, W.,

"MediaBench II Video: Expediting the next generation

of video systems research" Microprocessors and

Microsystems, 33(4): 301-318 (2009).

[9] Fletcher, B. H., "FPGA Embedded Processors:

Revealing True System Performance" Embedded

Systems Conference San Francisco 2005, (2005).

[10] Sitharam, M., Peters, J., Zhou, Y., "Optimized

parametrization of systems of incidences between rigid

bodies" Journal of Symbolic Computation, 45(4): 481-

498 (2010).

[11] Bai, Y. W., Cheng, C. H., "Dynamic Adjustment of

CPU Clock Speed to Prevent Notebook Overheating

Special Issue

Sci.Int.(Lahore),29(1),87-91, 2016 ISSN 1013-5316;CODEN: SINTE 8 91

January-Frbruary

and Shutdown by AC Adapter," The 1st IEEE Global

Conference on Consumer Electronics 2012, (2012).

[12] Best, B. N. B., "The Effect of Heat on Processors: A

Challenge to Computer Usage in Northern Nigeria

Rural Colleges" Journal of Global Research in

Computer Sciences, (2015).

[13] Leitao, B. H., "Tuning 10Gb network cards on Linux,"

Proceedings of the 2009 Linux Symposium, (2009).

[14] Technologies, M., "Performance Tuning Guidelines for

Mellanox Network Adapters (Revision 1.17 ed.),"

http://www.mellanox.com/related-

docs/prod_software/Performance_Tuning_Guide_for_

Mellanox_Network_Adapters.pdf, (2016).

[15] Greer, C., Bob, A., Sammeta, S., "Maximizing File

Transfer Performance Using 10Gb Ethernet and

Virtualization,"

http://www.intel.com/content/dam/support/us/en/docum

ents/network/sb/fedexcasestudyfinal.pdf, (2010).

[16] Emmerich, P., Raumer, D., Beifu, A., Erlacher, L.,

Wohlfart, F., et al., "Optimizing latency and CPU load

in packet processing systems," Proceedings of the

International Symposium on Performance Evaluation of

Computer and Telecommunication Systems, Chicago,

Illinois, (2015).

[17] Chang, X., Muppala, J. K., Zou, P., Li, X., "A Robust

Device Hybrid Scheme to Improve System Performance

in Gigabit Ethernet Networks," 32nd IEEE Conference

on Local Computer Networks (LCN 2007), pp. 444-454,

(2007).

[18] Maquelin, O., Gao, G. R., Hum, H. H., Theobald, K. B.,

Tian, X.-M., "Polling watchdog: Combining polling and

interrupts for efficient message handling," ACM

SIGARCH Computer Architecture News, pp. 179-188,

(1996).

[19] Spertus, E., Dally, W. J., "Evaluating the locality

benefits of active messages," ACM SIGPLAN Notices,

pp. 189-198, (1995).

[20] Spertus, E., Goldstein, S. C., Schauser, K. E., Von

Eicken, T., Culler, D. E., Dally, W. J., "Evaluation of

mechanisms for fine-grained parallel programs in the J-

machine and the CM-5," ACM SIGARCH Computer

Architecture News, pp. 302-313, (1993).

[21] Dovrolis, C., Thayer, B., Ramanathan, P., "HIP: hybrid

interrupt-polling for the network interface," ACM

SIGOPS Operating Systems Review, 35, pp. 50-60,

(2001).

[22] Vahalia, U., "Unix Internals: The New Frontiers"

Dorling Kindersley Pvt. Limited, (2008).

[23] Salah, K., Qahtan, A., "Implementation and

experimental performance evaluation of a hybrid

interrupt-handling scheme," Computer

Communications, 32, pp. 179-188, (2009).

[24] Nurika, O., Hassan, M. F., Zakaria, N., "A Study of

Relations between Optimal Network Card Mode and

Data Transmission Size" Journal of Informatics and

Mathematical Sciences, (2016), In Press.

[25] hping3, http://www.hping.org/hping3.html.

[26] NTOP PF_RING, http://www.ntop.org/products/packet-

capture/pf_ring/.

[27] Nurika, O., Hassan, M. F., Zakaria, N., Jung, L. T.,

"Mathematical Models for Network Card Simulation

and Their Empirical Validations" Proc. 2015

International Symposium on Mathematical Sciences &

Computing Research (iSMSC2015), 66-71 (2015).

